Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 283
Filtrar
1.
Nat Cancer ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637658

RESUMO

Tailoring optimal treatment for individual cancer patients remains a significant challenge. To address this issue, we developed PERCEPTION (PERsonalized Single-Cell Expression-Based Planning for Treatments In ONcology), a precision oncology computational pipeline. Our approach uses publicly available matched bulk and single-cell (sc) expression profiles from large-scale cell-line drug screens. These profiles help build treatment response models based on patients' sc-tumor transcriptomics. PERCEPTION demonstrates success in predicting responses to targeted therapies in cultured and patient-tumor-derived primary cells, as well as in two clinical trials for multiple myeloma and breast cancer. It also captures the resistance development in patients with lung cancer treated with tyrosine kinase inhibitors. PERCEPTION outperforms published state-of-the-art sc-based and bulk-based predictors in all clinical cohorts. PERCEPTION is accessible at https://github.com/ruppinlab/PERCEPTION . Our work, showcasing patient stratification using sc-expression profiles of their tumors, will encourage the adoption of sc-omics profiling in clinical settings, enhancing precision oncology tools based on sc-omics.

2.
Cancer Res ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38451249

RESUMO

Longitudinal monitoring of patients with advanced cancers is crucial to evaluate both disease burden and treatment response. Current liquid biopsy approaches mostly rely on the detection of DNA-based biomarkers. However, plasma RNA analysis can unleash tremendous opportunities for tumor state interrogation and molecular subtyping. Through the application of deep learning algorithms to the deconvolved transcriptomes of RNA within plasma extracellular vesicles (evRNA), we successfully predict consensus molecular subtypes in metastatic colorectal cancer patients. We further demonstrate the ability to monitor changes in transcriptomic subtype under treatment selection pressure and identify molecular pathways in evRNA associated with recurrence. Our approach also identified expressed gene fusions and neoepitopes from evRNA. These results demonstrate the feasibility of transcriptomic-based liquid biopsy platforms for precision oncology approaches, spanning from the longitudinal monitoring of tumor subtype changes to identification of expressed fusions and neoantigens as cancer-specific therapeutic targets, sans the need for tissue-based sampling.

3.
Nat Commun ; 15(1): 2608, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521835

RESUMO

Identifying sex differences in outcomes and toxicity between males and females in oncology clinical trials is important and has also been mandated by National Institutes of Health policies. Here we analyze the Trialtrove database, finding that, strikingly, only 472/89,221 oncology clinical trials (0.5%) had curated post-treatment sex comparisons. Among 288 trials with comparisons of survival, outcome, or response, 16% report males having statistically significant better survival outcome or response, while 42% reported significantly better survival outcome or response for females. The strongest differences are in trials of EGFR inhibitors in lung cancer and rituximab in non-Hodgkin's lymphoma (both favoring females). Among 44 trials with side effect comparisons, more trials report significantly lesser side effects in males (N = 22) than in females (N = 13). Thus, while statistical comparisons between sexes in oncology trials are rarely reported, important differences in outcome and toxicity exist. These considerable outcome and toxicity differences highlight the need for reporting sex differences more thoroughly going forward.


Assuntos
Neoplasias Pulmonares , Linfoma não Hodgkin , Estados Unidos , Feminino , Humanos , Masculino , Rituximab/uso terapêutico , Linfoma não Hodgkin/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
4.
Adv Sci (Weinh) ; : e2307263, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441406

RESUMO

Ferroptosis and apoptosis are key cell-death pathways implicated in several human diseases including cancer. Ferroptosis is driven by iron-dependent lipid peroxidation and currently has no characteristic biomarkers or gene signatures. Here a continuous phenotypic gradient between ferroptosis and apoptosis coupled to transcriptomic and metabolomic landscapes is established. The gradual ferroptosis-to-apoptosis transcriptomic landscape is used to generate a unique, unbiased transcriptomic predictor, the Gradient Gene Set (GGS), which classified ferroptosis and apoptosis with high accuracy. Further GGS optimization using multiple ferroptotic and apoptotic datasets revealed highly specific ferroptosis biomarkers, which are robustly validated in vitro and in vivo. A subset of the GGS is associated with poor prognosis in breast cancer patients and PDXs and contains different ferroptosis repressors. Depletion of one representative, PDGFA-assaociated protein 1(PDAP1), is found to suppress basal-like breast tumor growth in a mouse model. Omics and mechanistic studies revealed that ferroptosis is associated with enhanced lysosomal function, glutaminolysis, and the tricarboxylic acid (TCA) cycle, while its transition into apoptosis is attributed to enhanced endoplasmic reticulum(ER)-stress and phosphatidylethanolamine (PE)-to-phosphatidylcholine (PC) metabolic shift. Collectively, this study highlights molecular mechanisms underlying ferroptosis execution, identified a highly predictive ferroptosis gene signature with prognostic value, ferroptosis versus apoptosis biomarkers, and ferroptosis repressors for breast cancer therapy.

5.
NPJ Genom Med ; 9(1): 16, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409211

RESUMO

The majority of human genetic diseases are caused by single nucleotide variants (SNVs) in the genome sequence. Excitingly, new genomic techniques known as base editing have opened efficient pathways to correct erroneous nucleotides. Due to reliance on deaminases, which have the capability to convert A to I(G) and C to U, the direct applicability of base editing might seem constrained in terms of the range of mutations that can be reverted. In this evaluation, we assess the potential of DNA and RNA base editing methods for treating human genetic diseases. Our findings indicate that 62% of pathogenic SNVs found within genes can be amended by base editing; 30% are G>A and T>C SNVs that can be corrected by DNA base editing, and most of them by RNA base editing as well, and 29% are C>T and A>G SNVs that can be corrected by DNA base editing directed to the complementary strand. For each, we also present several factors that affect applicability such as bystander and off-target occurrences. For cases where editing the mismatched nucleotide is not feasible, we introduce an approach that calculates the optimal substitution of the deleterious amino acid with a new amino acid, further expanding the scope of applicability. As personalized therapy is rapidly advancing, our demonstration that most SNVs can be treated by base editing is of high importance. The data provided will serve as a comprehensive resource for those seeking to design therapeutic base editors and study their potential in curing genetic diseases.

6.
bioRxiv ; 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38313282

RESUMO

The co-occurrence of chromosome 10 loss and chromosome 7 gain in gliomas is the most frequent loss-gain co-aneuploidy pair in human cancers, a phenomenon that has been investigated without resolution since the late 1980s. Expanding beyond previous gene-centric studies, we investigate the co-occurrence in a genome-wide manner taking an evolutionary perspective. First, by mining large tumor aneuploidy data, we predict that the more likely order is 10 loss followed by 7 gain. Second, by analyzing extensive genomic and transcriptomic data from both patients and cell lines, we find that this co-occurrence can be explained by functional rescue interactions that are highly enriched on 7, which can possibly compensate for any detrimental consequences arising from the loss of 10. Finally, by analyzing transcriptomic data from normal, non-cancerous, human brain tissues, we provide a plausible reason why this co-occurrence happens preferentially in cancers originating in certain regions of the brain.

7.
Med ; 5(1): 73-89.e9, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38218178

RESUMO

BACKGROUND: Synthetic lethality (SL) denotes a genetic interaction between two genes whose co-inactivation is detrimental to cells. Because more than 25 years have passed since SL was proposed as a promising way to selectively target cancer vulnerabilities, it is timely to comprehensively assess its impact so far and discuss its future. METHODS: We systematically analyzed the literature and clinical trial data from the PubMed and Trialtrove databases to portray the preclinical and clinical landscape of SL oncology. FINDINGS: We identified 235 preclinically validated SL pairs and found 1,207 pertinent clinical trials, and the number keeps increasing over time. About one-third of these SL clinical trials go beyond the typically studied DNA damage response (DDR) pathway, testifying to the recently broadening scope of SL applications in clinical oncology. We find that SL oncology trials have a greater success rate than non-SL-based trials. However, about 75% of the preclinically validated SL interactions have not yet been tested in clinical trials. CONCLUSIONS: Dissecting the recent efforts harnessing SL to identify predictive biomarkers, novel therapeutic targets, and effective combination therapy, our systematic analysis reinforces the hope that SL may serve as a key driver of precision oncology going forward. FUNDING: Funded by the Samsung Research Funding & Incubation Center of Samsung Electronics, the Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Republic of Korea government (MSIT), the Kwanjeong Educational Foundation, the Intramural Research Program of the National Institutes of Health (NIH), National Cancer Institute (NCI), and Center for Cancer Research (CCR).


Assuntos
Neoplasias , Humanos , Oncologia , Neoplasias/genética , Neoplasias/terapia , Medicina de Precisão , República da Coreia , Mutações Sintéticas Letais/genética , Estados Unidos , Ensaios Clínicos como Assunto
8.
Blood ; 143(8): 697-712, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38048593

RESUMO

ABSTRACT: Aberrant expression of stem cell-associated genes is a common feature in acute myeloid leukemia (AML) and is linked to leukemic self-renewal and therapy resistance. Using AF10-rearranged leukemia as a prototypical example of the recurrently activated "stemness" network in AML, we screened for chromatin regulators that sustain its expression. We deployed a CRISPR-Cas9 screen with a bespoke domain-focused library and identified several novel chromatin-modifying complexes as regulators of the TALE domain transcription factor MEIS1, a key leukemia stem cell (LSC)-associated gene. CRISPR droplet sequencing revealed that many of these MEIS1 regulators coordinately controlled the transcription of several AML oncogenes. In particular, we identified a novel role for the Tudor-domain-containing chromatin reader protein SGF29 in the transcription of AML oncogenes. Furthermore, SGF29 deletion impaired leukemogenesis in models representative of multiple AML subtypes in multiple AML subtype models. Our studies reveal a novel role for SGF29 as a nononcogenic dependency in AML and identify the SGF29 Tudor domain as an attractive target for drug discovery.


Assuntos
Proteínas de Homeodomínio , Leucemia Mieloide Aguda , Humanos , Proteínas de Homeodomínio/genética , Cromatina/genética , Fatores de Transcrição/genética , Proteína Meis1/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Carcinogênese
9.
bioRxiv ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-38076973

RESUMO

Metastasis is a leading cause of cancer-related deaths, yet understanding how metastatic tumors adapt from their origin to target tissues is challenging. To address this, we assessed whether primary and metastatic tumors resemble their tissue of origin or target tissue in terms of gene expression. We analyzed gene expression profiles from various cancer types, including single-cell and bulk RNA-seq data, in both paired and unpaired primary and metastatic patient cohorts. We quantified the transcriptomic distances between tumor samples and their normal tissues, revealing that primary tumors are more similar to their tissue of origin, while metastases shift towards the target tissue. Pathway-level analysis highlighted critical transcriptomic changes during metastasis. Notably, primary cancers exhibited higher activity in cancer hallmarks, including Activating Invasion and Metastasis , compared to metastatic cancers. This comprehensive landscape analysis provides insight into how cancer tumors adapt to their metastatic environments, providing a transcriptome-wide view of the processes involved.

10.
bioRxiv ; 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38077050

RESUMO

Decreased intra-tumor heterogeneity (ITH) correlates with increased patient survival and immunotherapy response. However, even highly homogenous tumors may display variability in their aggressiveness, and how immunologic-factors impinge on their aggressiveness remains understudied. Here we studied the mechanisms responsible for the immune-escape of murine tumors with low ITH. We compared the temporal growth of homogeneous, genetically-similar single-cell clones that are rejected vs. those that are not-rejected after transplantation in-vivo using single-cell RNA sequencing and immunophenotyping. Non-rejected clones showed high infiltration of tumor-associated-macrophages (TAMs), lower T-cell infiltration, and increased T-cell exhaustion compared to rejected clones. Comparative analysis of rejection-associated gene expression programs, combined with in-vivo CRISPR knockout screens of candidate mediators, identified Mif (macrophage migration inhibitory factor) as a regulator of immune rejection. Mif knockout led to smaller tumors and reversed non-rejection-associated immune composition, particularly, leading to the reduction of immunosuppressive macrophage infiltration. Finally, we validated these results in melanoma patient data.

11.
NAR Genom Bioinform ; 5(4): lqad092, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37859800

RESUMO

Given the current status of coronavirus disease 2019 (COVID-19) as a global pandemic, it is of high priority to gain a deeper understanding of the disease's development and how the virus impacts its host. Adenosine (A)-to-Inosine (I) RNA editing is a post-transcriptional modification, catalyzed by the ADAR family of enzymes, that can be considered part of the inherent cellular defense mechanism as it affects the innate immune response in a complex manner. It was previously reported that various viruses could interact with the host's ADAR enzymes, resulting in epigenetic changes both to the virus and the host. Here, we analyze RNA-seq of nasopharyngeal swab specimens as well as whole-blood samples of COVID-19 infected individuals and show a significant elevation in the global RNA editing activity in COVID-19 compared to healthy controls. We also detect specific coding sites that exhibit higher editing activity. We further show that the increment in editing activity during the disease is temporary and returns to baseline shortly after the symptomatic period. These significant epigenetic changes may contribute to the immune system response and affect adverse outcomes seen in post-viral cases.

12.
bioRxiv ; 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37886558

RESUMO

Immune checkpoint blockade (ICB) is a promising cancer therapy; however, resistance often develops. To learn more about ICB resistance mechanisms, we developed IRIS (Immunotherapy Resistance cell-cell Interaction Scanner), a machine learning model aimed at identifying candidate ligand-receptor interactions (LRI) that are likely to mediate ICB resistance in the tumor microenvironment (TME). We developed and applied IRIS to identify resistance-mediating cell-type-specific ligand-receptor interactions by analyzing deconvolved transcriptomics data of the five largest melanoma ICB therapy cohorts. This analysis identifies a set of specific ligand-receptor pairs that are deactivated as tumors develop resistance, which we refer to as resistance deactivated interactions (RDI). Quite strikingly, the activity of these RDIs in pre-treatment samples offers a markedly stronger predictive signal for ICB therapy response compared to those that are activated as tumors develop resistance. Their predictive accuracy surpasses the state-of-the-art published transcriptomics biomarker signatures across an array of melanoma ICB datasets. Many of these RDIs are involved in chemokine signaling. Indeed, we further validate on an independent large melanoma patient cohort that their activity is associated with CD8+ T cell infiltration and enriched in hot/brisk tumors. Taken together, this study presents a new strongly predictive ICB response biomarker signature, showing that following ICB treatment resistant tumors turn inhibit lymphocyte infiltration by deactivating specific key ligand-receptor interactions.

13.
J Immunother Cancer ; 11(10)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37852738

RESUMO

BACKGROUND: Systemic immune activation, hallmarked by C-reactive protein (CRP) and interleukin-6 (IL-6), can modulate antitumor immune responses. In this study, we evaluated the role of IL-6 and CRP in the stratification of patients with non-small cell lung cancer (NSCLC) treated with immune checkpoint inhibitors (ICIs). We also interrogated the underlying immunosuppressive mechanisms driven by the IL-6/CRP axis. METHODS: In cohort A (n=308), we estimated the association of baseline CRP with objective response rate (ORR), progression-free survival (PFS), and overall survival (OS) in patients with NSCLC treated with ICIs alone or with chemo-immunotherapy (Chemo-ICI). Baseline tumor bulk RNA sequencing (RNA-seq) of lung adenocarcinomas (LUADs) treated with pembrolizumab (cohort B, n=59) was used to evaluate differential expression of purine metabolism, as well as correlate IL-6 expression with PFS. CODEFACS approach was applied to deconvolve cohort B to characterize the tumor microenvironment by reconstructing the cell-type-specific transcriptome from bulk expression. Using the LUAD cohort from The Cancer Genome Atlas (TCGA) we explored the correlation between IL-6 expression and adenosine gene signatures. In a third cohort (cohort C, n=18), plasma concentrations of CRP, adenosine 2a receptor (A2aR), and IL-6 were measured using ELISA. RESULTS: In cohort A, 67.2% of patients had a baseline CRP≥10 mg/L (CRP-H). Patients with CRP-H achieved shorter OS (8.6 vs 14.8 months; p=0.006), shorter PFS (3.3 vs 6.6 months; p=0.013), and lower ORR (24.7% vs 46.3%; p=0.015). After adjusting for relevant clinical variables, CRP-H was confirmed as an independent predictor of increased risk of death (HR 1.51, 95% CI: 1.09 to 2.11) and lower probability of achieving disease response (OR 0.34, 95% CI: 0.13 to 0.89). In cohort B, RNA-seq analysis demonstrated higher IL-6 expression on tumor cells of non-responders, along with a shorter PFS (p<0.05) and enrichment of the purinergic pathway. Within the TCGA LUAD cohort, tumor IL-6 expression strongly correlated with the adenosine signature (R=0.65; p<2.2e-16). Plasma analysis in cohort C demonstrated that CRP-H patients had a greater median baseline level of A2aR (6.0 ng/mL vs 1.3 ng/mL; p=0.01). CONCLUSIONS: This study demonstrates CRP as a readily available blood-based prognostic biomarker in ICI-treated NSCLC. Additionally, we elucidate a potential link of the CRP/IL-6 axis with the immunosuppressive adenosine signature pathway that could drive inferior outcomes to ICIs in NSCLC and also offer novel therapeutic avenues.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Adenosina , Proteína C-Reativa , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Resistencia a Medicamentos Antineoplásicos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Interleucina-6 , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Microambiente Tumoral , Regulação para Cima
14.
Nat Commun ; 14(1): 6509, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845222

RESUMO

Proteolysis-targeting chimera (PROTAC) and other targeted protein degradation (TPD) molecules that induce degradation by the ubiquitin-proteasome system (UPS) offer new opportunities to engage targets that remain challenging to be inhibited by conventional small molecules. One fundamental element in the degradation process is the E3 ligase. However, less than 2% amongst hundreds of E3 ligases in the human genome have been engaged in current studies in the TPD field, calling for the recruiting of additional ones to further enhance the therapeutic potential of TPD. To accelerate the development of PROTACs utilizing under-explored E3 ligases, we systematically characterize E3 ligases from seven different aspects, including chemical ligandability, expression patterns, protein-protein interactions (PPI), structure availability, functional essentiality, cellular location, and PPI interface by analyzing 30 large-scale data sets. Our analysis uncovers several E3 ligases as promising extant PROTACs. In total, combining confidence score, ligandability, expression pattern, and PPI, we identified 76 E3 ligases as PROTAC-interacting candidates. We develop a user-friendly and flexible web portal ( https://hanlaboratory.com/E3Atlas/ ) aimed at assisting researchers to rapidly identify E3 ligases with promising TPD activities against specifically desired targets, facilitating the development of these therapies in cancer and beyond.


Assuntos
Neoplasias , Ubiquitina-Proteína Ligases , Humanos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Ubiquitinação , Neoplasias/metabolismo
15.
Res Sq ; 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37790315

RESUMO

Advances in artificial intelligence have paved the way for leveraging hematoxylin and eosin (H&E)-stained tumor slides for precision oncology. We present ENLIGHT-DeepPT, an approach for predicting response to multiple targeted and immunotherapies from H&E-slides. In difference from existing approaches that aim to predict treatment response directly from the slides, ENLIGHT-DeepPT is an indirect two-step approach consisting of (1) DeepPT, a new deep-learning framework that predicts genome-wide tumor mRNA expression from slides, and (2) ENLIGHT, which predicts response based on the DeepPT inferred expression values. DeepPT successfully predicts transcriptomics in all 16 TCGA cohorts tested and generalizes well to two independent datasets. Our key contribution is showing that ENLIGHT-DeepPT successfully predicts true responders in five independent patients' cohorts involving four different treatments spanning six cancer types with an overall odds ratio of 2.44, increasing the baseline response rate by 43.47% among predicted responders, without the need for any treatment data for training. Furthermore, its prediction accuracy on these datasets is comparable to a supervised approach predicting the response directly from the images, which needs to be trained and tested on the same cohort. ENLIGHT-DeepPT future application could provide clinicians with rapid treatment recommendations to an array of different therapies and importantly, may contribute to advancing precision oncology in developing countries.

16.
Cancers (Basel) ; 15(19)2023 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-37835579

RESUMO

Chimeric antigen receptor (CAR) T cell therapies have yielded transformative clinical successes for patients with blood tumors, but their full potential remains to be unleashed against solid tumors. One challenge is finding selective targets, which we define intuitively to be cell surface proteins that are expressed widely by cancer cells but minimally by healthy cells in the tumor microenvironment and other normal tissues. Analyzing patient tumor single-cell transcriptomics data, we first defined and quantified selectivity and safety scores of existing CAR targets for indications in which they are in clinical trials or approved. We then sought new candidate cell surface CAR targets that have better selectivity and safety scores than those currently being tested. Remarkably, in almost all cancer types, we could not find such better targets, testifying to the near optimality of the current target space. However, in human papillomavirus (HPV)-negative head and neck squamous cell carcinoma (HNSC), for which there is currently a dearth of existing CAR targets, we identified a total of twenty candidate novel CAR targets, five of which have both superior selectivity and safety scores. These newly identified cell surface targets lay a basis for future investigations that may lead to better CAR treatments in HNSC.

17.
Front Immunol ; 14: 1232560, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37753082

RESUMO

Introduction: Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-linked enzymatic disorder that is particularly prevalent in Africa, Asia, and the Middle East. This study aimed to assess the long-term health risks associated with G6PD deficiency. Methods: A retrospective cohort study was conducted using data from a national healthcare provider in Israel (Leumit Health Services). A total of 7,473 G6PD-deficient individuals were matched with 29,892 control subjects in a 1:4 ratio, based on age, gender, socioeconomic status, and ethnic groups. The exposure of interest was recorded G6PD diagnosis or positive G6PD diagnostic test. The main outcomes and measures included rates of infectious diseases, allergic conditions, and autoimmune disorders between 2002 and 2022. Results: Significantly increased rates were observed for autoimmune disorders, infectious diseases, and allergic conditions in G6PD-deficient individuals compared to the control group. Specifically, notable increases were observed for rheumatoid arthritis (odds ratio [OR] 2.41, p<0.001), systemic lupus erythematosus (OR 4.56, p<0.001), scleroderma (OR 6.87, p<0.001), pernicious anemia (OR 18.70, p<0.001), fibromyalgia (OR 1.98, p<0.001), Graves' disease (OR 1.46, p=0.001), and Hashimoto's thyroiditis (OR 1.26, p=0.001). These findings were supported by elevated rates of positive autoimmune serology and higher utilization of medications commonly used to treat autoimmune conditions in the G6PD-deficient group. Discussion: In conclusion, individuals with G6PD deficiency are at a higher risk of developing autoimmune disorders, infectious diseases, and allergic conditions. This large-scale observational study provides valuable insights into the comprehensive association between G6PD deficiency and infectious and immune-related diseases. The findings emphasize the importance of considering G6PD deficiency as a potential risk factor in clinical practice and further research is warranted to better understand the underlying mechanisms of these associations.


Assuntos
Artrite Reumatoide , Doenças Autoimunes , Deficiência de Glucosefosfato Desidrogenase , Doença de Graves , Hipersensibilidade , Humanos , Doenças Autoimunes/epidemiologia , Deficiência de Glucosefosfato Desidrogenase/epidemiologia , Estudos Retrospectivos
18.
Nat Rev Clin Oncol ; 20(11): 780-798, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37726418

RESUMO

Immune-checkpoint inhibitors (ICIs) are now widely used for the treatment of patients with advanced-stage hepatocellular carcinoma (HCC). Two different ICI-containing regimens, atezolizumab plus bevacizumab and tremelimumab plus durvalumab, are now approved standard-of-care first-line therapies in this setting. However, and despite substantial improvements in survival outcomes relative to sorafenib, most patients with advanced-stage HCC do not derive durable benefit from these regimens. Advances in genome sequencing including the use of single-cell RNA sequencing (both of tumour material and blood samples), as well as immune cell identification strategies and other techniques such as radiomics and analysis of the microbiota, have created considerable potential for the identification of novel predictive biomarkers enabling the accurate selection of patients who are most likely to derive benefit from ICIs. In this Review, we summarize data on the immunology of HCC and the outcomes in patients receiving ICIs for the treatment of this disease. We then provide an overview of current biomarker use and developments in the past 5 years, including gene signatures, circulating tumour cells, high-dimensional flow cytometry, single-cell RNA sequencing as well as approaches involving the microbiome, radiomics and clinical markers. Novel concepts for further biomarker development in HCC are then discussed including biomarker-driven trials, spatial transcriptomics and integrated 'big data' analysis approaches. These concepts all have the potential to better identify patients who are most likely to benefit from ICIs and to promote the development of new treatment approaches.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Imunoterapia , Sorafenibe , Biomarcadores
19.
Am Soc Clin Oncol Educ Book ; 43: e390290, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37459578

RESUMO

What does the future of cancer immunotherapy look like and how do we get there? Find out where we've been and where we're headed in A Report on Resistance: The Road to personalized immunotherapy.

20.
Sci Adv ; 9(27): eadf6621, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37406115

RESUMO

Nuclear receptors (NRs) are implicated in the regulation of tumors and immune cells. We identify a tumor-intrinsic function of the orphan NR, NR2F6, regulating antitumor immunity. NR2F6 was selected from 48 candidate NRs based on an expression pattern in melanoma patient specimens (i.e., IFN-γ signature) associated with positive responses to immunotherapy and favorable patient outcomes. Correspondingly, genetic ablation of NR2F6 in a mouse melanoma model conferred a more effective response to PD-1 therapy. NR2F6 loss in B16F10 and YUMM1.7 melanoma cells attenuated tumor development in immune-competent but not -incompetent mice via the increased abundance of effector and progenitor-exhausted CD8+ T cells. Inhibition of NACC1 and FKBP10, identified as NR2F6 effectors, phenocopied NR2F6 loss. Inoculation of NR2F6 KO mice with NR2F6 KD melanoma cells further decreased tumor growth compared with NR2F6 WT mice. Tumor-intrinsic NR2F6 function complements its tumor-extrinsic role and justifies the development of effective anticancer therapies.


Assuntos
Linfócitos T CD8-Positivos , Melanoma , Animais , Camundongos , Imunoterapia , Melanoma/genética , Proteínas Repressoras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...